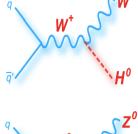
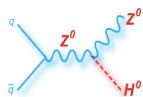
Combination of CDF's Higgs Boson Searches with up to 10 fb^{-1} of Data

Azeddine Kasmi Baylor University On behalf of the CDF Collaboration ICHEP 2012, Melbourne, Australia

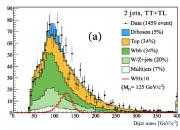
July 7, 2012

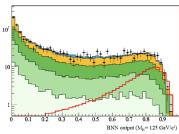



The Search Strategy

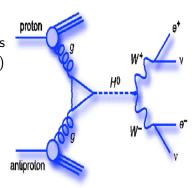
- One channel is not enough
- Optimize each channel individually
- No channel left behind
- Heavy use of multivariate techniques
 - Artificial Neural Networks
 - Boosted Decision Trees
 - Support Vector Machines
- The focus of the talk is $H o b \bar{b}$ and H o WW
- Since Tevatron sensitivity is driven by $H \to b\bar{b}$ searches, it provides a complementary information to the LHC searches.

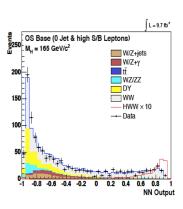
Higgs to $b\bar{b}$ Final State


- Single Higgs production (gluon fusion)
 - Largest cross section
 - Not feasible for b-quark decay: more QCD background
 - Still, use it for Higgs decays to photon or tau lepton pairs
- Associated production (WH, ZH)
 - Take advantage of the leptonic decays of the W or Z bosons
 - Charged-lepton and missing-transverse-energy-based triggers
 - Identify jets that originate from b quarks
- See Weiming Yao's talk

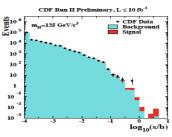


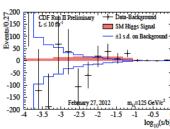
Example of NN Discriminant


- Two *b*-tagged jets in $WH \rightarrow l\nu bb$, most sensitive channel
- Artificial neural network as final discriminant trained for a Higgs boson mass of 125 GeV/c²
- NN trained for each mass point tested

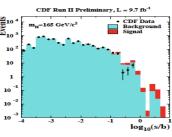

Higgs to WW Final States

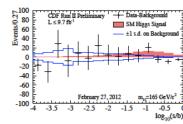
- Higgs decays mostly to W boson pairs
- Single Higgs production (gluon fusion)
 - Most sensitive channel to the SM Higgs
 - 2 charged leptons;0, 1 or 2 and more jets
- See Massimo Casarsa's talk


Example of NN Discriminant


- Two oppositely-charged leptons, with 0 jet
- \bullet Artificial neural network as final discriminant trained for a Higgs boson mass of 165 GeV/c²
- NN trained for each mass point tested

S/B Ratio Plots $m_H = 125 \text{ GeV/c}^2$

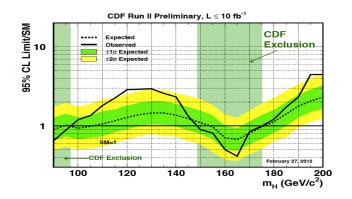

- Sum final discriminants after rebinning in log₁₀(s/b)
 - Sum all independent channels
 - background very well modeled
 - Data events excess in signal region
- Backgrounds subtraction from data



S/B Ratio Plots $m_H = 165 \text{ Gev/c}^2$

- Sum final discriminants after rebinning in log₁₀(s/b)
 - Sum all independent channels
 - background very well modeled
 - No data events excess in signal region
- Backgrounds subtraction from data

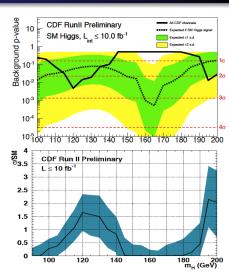
Limit Setting & Systematic Uncertainties


- Bayesian approach with Poisson statistics
- Rate and shape systematic uncertainties are introduced as nuisance parameters
- Rate: uncertainty on the total normalization
- Shape: uncertainty on bin-by-bin normalization
 - Use full discriminant shapes to extract the most information
- Correlated among various analyses
 - Charged lepton, trigger, b-tagging efficiencies
 - Luminosity, background & signal cross sections
- Uncorrelated among various analyses
 - Fake object identification (e.g.: jets faking electrons and $\not\!\!E_T$)
 - Data-driven background modeling

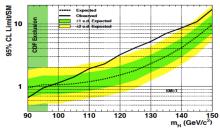
CDF Combination Channels

Channel	Luminosity (fb $^{-1}$)
H o WW	9.7
$\mathit{ZH} ightarrow \mathit{IIbb}$	9.45
$WH + ZH ightarrow ot\!$	9.45
$W\!H o I u$ bb	9.45
extstyle H ightarrow au au	8.3
$ttH(ot\!\!\!/_T+jets)$	5.7
W, Z + au au	6.2
$H o\gamma\gamma$	10.0
ttH(I+jets)	9.45
H o ZZ o 4I	9.7
$WH + ZH + VBF \rightarrow jjbb$	9.45

Secondary channels talks is covered in Elisabetta Pianori's talk


SM Higgs Boson Combined Limits

- Exclude $147-175 \text{ GeV/c}^2$
- Broad excess observed. Largest excess: 120 GeV/c²
- Global p-value = 2.1σ


SM Higgs Boson Limits Interpretation

- Broad excess observed at masses below 150 GeV/c^2
- Largest excess: 120 GeV/c²: Global p-value = 2.1σ
- Fits to the cross sections compared to the SM expectation shows consistency within uncertainty.

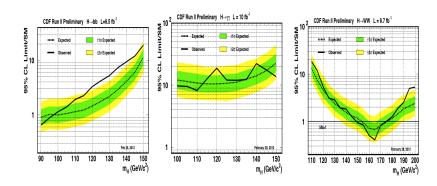
CDF Combined Search in H o bar b Decay Mode

- Exclude $m_H = 96 \text{ GeV/c}^2$
- For $m_H = 125 \text{ GeV/c}^2$
 - Expected: 1.80
 - Observed: 4.15
- An excess is seen in the mass range 115-150 GeV/c²
 - Global significance of 2.5σ

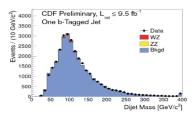
Conclusion

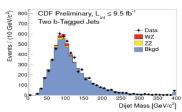
- Search for the SM Higgs boson in many channels
- CDF has made major improvements to its SM Higgs searches
- Expected sensitivity: $1.46 \times SM$ or better $< 185 \text{ GeV/c}^2$
- Exclude 147–175 GeV/c²
- Associated production H o b ar b channels
 - Broad excess observed.
 - Largest excess: 135 GeV/ c^2 : Global p-value = 2.5σ
- CDF combination
 - Broad excess observed at masses below 150 GeV/c²
 - Largest excess: 120 GeV/c²: Global p-value = 2.1σ
- ATLAS and CMS announced a discovery of a Higgs boson like particle. Thus, the need to understand its properties
 - CDF data will play a large role in a measurements of $\sigma(WH+ZH) \times BR(H \to b\bar{b})$

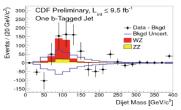
Back Up

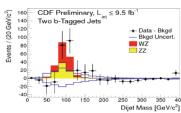

Back up slides

Back Up

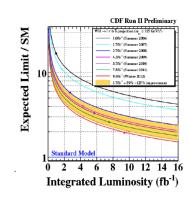

Excess at m_H = 195 GeV/c² CDF Run II Prelimmary Fig. 10 Go J Jet, High 5:B Fig. 118 GeV/c² CDF Run II Prelimmary Fig. 10 Go Jets, High 5:B Fig. 118 GeV/c² To Go Jets, High 5:B Fig. 118

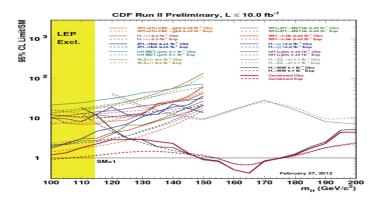

- Behavior of observed limits driven by small event excesses in the high S/B regions of opposite-sign dilepton 0 and 1 jet channels
- Nothing peculiar in the modeling of these distributions
- Of course, ATLAS and CMS have ruled out a m_H = 195 GeV/c²
 SM Higgs based primarily on equivalent searches in H->WW


SM Higgs Boson Limits per channel



Diboson as a candle




Sensitivity With Time

Many improvements

- Online Event Selection
 - Optimized trigger paths and add new triggers designed for SM Higgs searches
- Event Reconstruction
 - Employ multivariate lepton identification
- Background Rejection
 - Reject instrumental background via a support vector machine
- New b-jet Identification
 - New CDF neural network b—tagger

SM Higgs Boson Limits per Channel

Each channel contributes. WH most sensitive channel for low mass Higgs searches. $H \to WW$ most sensitive channel for high mass Higgs searches.